The Rayleigh–Ritz method, refinement and Arnoldi process for periodic matrix pairs
نویسندگان
چکیده
منابع مشابه
The Rayleigh-Ritz method, refinement and Arnoldi process for periodic matrix pairs
We extend the Rayleigh–Ritz method to the eigen-problem of periodic matrix pairs. Assuming that the deviations of the desired periodic eigenvectors from the corresponding periodic subspaces tend to zero, we show that there exist periodic Ritz values that converge to the desired periodic eigenvalues unconditionally, yet the periodic Ritz vectorsmay fail to converge. To overcome this potential pr...
متن کاملRayleigh-Ritz Approximation and Refinement of Periodic Matrix Pairs
In this paper, we study the Rayleigh-Ritz approximation for the eigenproblem of periodic matrix pairs. We show the convergence of the Ritz value and periodic Ritz vectors. Furthermore, we prove the convergence of refined periodic Ritz vectors and propose an efficient algorithm for computing the refined periodic Ritz vectors. The numerical result shows that the refinement procedure produces an e...
متن کاملPerturbation, Extraction and Refinement of Invariant Pairs for Matrix Polynomials
Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of an invariant subs...
متن کاملA generalized global Arnoldi method for ill-posed matrix equations
This paper discusses the solution of large-scale linear discrete ill-posed problems with a noise-contaminated right-hand side. Tikhonov regularization is used to reduce the influence of the noise on the computed approximate solution. We consider problems in which the coefficient matrix is the sum of Kronecker products of matrices and present a generalized global Arnoldi method, that respects th...
متن کاملPerturbation analysis for the eigenproblem of periodic matrix pairs
This paper is devoted to perturbation analysis for the eigenproblem of periodic matrix pairs {(Aj ,Ej )}j=1. We first study perturbation expansions of periodic deflating subspaces and eigenvalue pairs. Then, we derive explicit expressions of condition numbers, perturbation bounds and backward errors for eigenvalue pairs and periodic deflating subspaces. © 2001 Elsevier Science Inc. All rights r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2011
ISSN: 0377-0427
DOI: 10.1016/j.cam.2010.11.014